Volume 4, Number 4 (1-2017)                   2017, 4(4): 29-39 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zabbah I, Hassaanzadeh M, kohjani Z. The Effect of Continuous Parameters on the Diagnosis of Coronary Artery Disease Using Artificial Neural Networks. Journal of Torbat Heydariyeh University of Medical Sciences. 2017; 4 (4) :29-39
URL: http://jms.thums.ac.ir/article-1-369-en.html

1- Lecturer Islamic Azad University Of Torbat-e-heydaiyeh, khorasan razavi,Iran
2- Lecturer University of medical sciences, Torbat-e-heydariyeh, khorasan razavi,Iran
3- student University Of Torbat-e-heydaiyeh, khorasan razavi,Iran
Abstract:   (260 Views)

Background & Aim: Coronary artery disease is among the common diseases in societies. The best method of assessing coronary artery diseases is through angiography. This study aimed at investigating the effect of disease parameters on the diagnosis of coronary artery disease using artificial neural networks.

Methods: This analytic study included a database of 200 non-attributable records. In this research, different neural networks such as MLP, LVQ and BR were used to predict whether the coronary arteries were blocked or not. In addition, the importance of the continuous risk factors of coronary artery disease was studied.

Results: The most important criteria of the diagnosis systems are the specificity and sensitivity indicators. In this study, these two indicators were calculated in the test. The best accuracy was observed in MLP, with a back-error propagation of 88%. It was also observed that the removal of discrete parameters positively affects neural network convergence speed so that the prediction accuracy could reach 85%.

Conclusion: Angiography is a high-cost invasive procedure with risk factors such as death, stroke and heart attack. Therefore, noninvasive methods should be applied in order to minimize   error and maximize reliability to predict the disease. Using data mining methods can decrease the complications of the disease.

Full-Text [PDF 205 kb]   (164 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/02/3 | Accepted: 2017/05/14 | Published: 2017/06/22

Add your comments about this article : Your username or email:
Write the security code in the box

Send email to the article author


© 2015 All Rights Reserved | Journal of Torbat Heydariyeh University of Medical Sciences

Designed & Developed by : Yektaweb