دوره 13، شماره 4 - ( 10-1404 )                   جلد 13 شماره 4 صفحات 16-1 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khatibi A D, Sabaghi G, Balarak D, Meshkinian A, Mohammadpour R, Kord Mostafapour F. Photocatalytic removal of Aniline using Titanium dioxide/Iron oxide/Graphene‌ oxide nanocomposite from synthetic wastewater. jmsthums 2025; 13 (4) :1-16
URL: http://jms.thums.ac.ir/article-1-1450-fa.html
خطیبی آرام دخت، صباغی غلامرضا، بلارک داود، مشکینیان علی، محمدپور رضا، کرد مصطفی پور فردوس. حذف فتوکاتالیستی آنیلین با استفاده از نانوکامپوزیت دی‌اکسید تیتانیوم/اکسید آهن/اکسیدگرافن از فاضلاب سنتتیک. مجله دانشگاه علوم پزشکی تربت حیدریه. 1404; 13 (4) :1-16

URL: http://jms.thums.ac.ir/article-1-1450-fa.html


1- گروه مهندسی بهداشت محیط، مرکز تحقیقات ارتقا سلامت، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران
2- کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران
3- گروه مهندسی بهداشت حرفه‌ای، مرکز تحقیقات ارتقا سلامت، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران
چکیده:   (71 مشاهده)
زمینه و هدف: یکی از مهم‌ترین ترکیبات هیدروکربن‌های آروماتیک، آنیلین می‌باشد که در زمینه‌های مختلف صنعتی، دارویی و شیمیایی کاربردهای گسترده‌ای دارد. با توجه به اثرات خطرناک آنیلین بر روی سلامت انسان و محیط، ‏محدودیت‌های سخت‌گیرانه‌ای برای آب حاوی آنیلین وجود دارد. هدف از این مطالعه حذف فتوکاتالیستی آنیلین با استفاده از نانوکامپوزیت دی‌اکسید تیتانیوم/ اکسید آهن و اکسید گرافن می‌باشد.
روش­ ها: در این مطالعه نانوکامپوزیت GO/Fe3O4/TiO2 سنتز شد. تأثیر پارامترهای مختلف مانند زمان واکنش، غلظت آنیلین، دوز نانوکامپوزیت،pH و شدت تابش بررسی و بازیابی و استفاده مجدد ازکاتالیست در چهار مرحله انجام شد. همچنین سینتیک واکنش و میزان مصرف انرژی محاسبه گردید.
نتایج: نتایج نشان داد pH برابر با 7 و غلظت نانوکامپوزیت 0/8 گرم در لیتر و غلظت آنیلین 50 میلی‌گرم و زمان تماس 60 دقیقه به‌عنوان پارامترهای بهینه انتخاب و کارایی حذف در این شرایط برابر با 98/04 درصد بود. در زمان واکنش 10 و 90 دقیقه میزان مصرف انرژی به ترتیب برابر با 21/5 و 7/72 کیلووات ساعت بر مترمکعب به دست آمد. ثابت سرعت واکنش برابر با 0/049 بر دقیقه به دست آمد. همچنین 5/5 درصد کاهش در 4 مرحله بازیابی و استفاده مجدد از نانوکامپوزیت مشاهده شد.
نتیجه­ گیری: با توجه به بازدهی مطلوب نانوکامپوزیت و با در نظر گرفتن سادگی جداسازی آن در یک میدان مغناطیسی خارجی و قابلیت استفاده مجدد از آن، می‌توان کاربردهای آینده نانوکامپوزیت را جهت تخریب آلاینده‌های آلی با ساختار شیمیایی مشابه توسعه داد.

 
متن کامل [PDF 707 kb]   (80 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1404/4/6 | پذیرش: 1404/8/4 | انتشار: 1404/11/20

فهرست منابع
1. Tang H, Li J, Bie Y, Zhu L, Zou J. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery. J Hazard Mater. 2010;175(1- 3):977-84. [DOI:10.1016/j.jhazmat.2009.10.106]
2. Vieno NM, Tuhkanen T, Kronberg L. Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatography-tandem mass spectrometry detection. J Chromatogr A. 2006;1134(1-2):101-11. [DOI:10.1016/j.chroma.2006.08.077]
3. Han Y, Quan X, Chen S, Zhao H, Cui C, Zhao Y. Electrochemically enhanced adsorption of aniline on activated carbon fibers. Separat Purificat Tech. 2006;50(3):365-72. [DOI:10.1016/j.seppur.2005.12.011]
4. Wu GQ, Zhang X, Hui H, Yan J, Zhang QS, Wan JL, et al. Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. Chem Engin J. 2012;185:201-10. [DOI:10.1016/j.cej.2012.01.084]
5. Kakavandi B, Jonidi AJ, Rezaei RK, Nasseri S, Ameri A, Esrafily A. Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian J Environ Health Sci Eng. 2013;10(1):19. [DOI:10.1186/1735-2746-10-19]
6. Nakhostin Panahi, Nikoo, A. Aniline removal from polluted water with photocatalytic oxidation process by zinc oxide loaded with carbon. Journal of applied research in chemisry, 2021; 15(3), 1-11. [DOI:10.30495/jacr.2021.685497]
7. Razghandi Z, Jarahi F, Darein F, Rezayi‎ Z, Rastegar, A. Remove aniline from aqueous solution with activated carbon ‎produced ‎‎from cotton stalks ‎. Beyhagh, 2016; 21(1), 30-41.
8. Mohammed M, Mekala LP, Chintalapati S, Chintalapati VR. New insights into aniline toxicity: Aniline exposure triggers envelope stress and extracellular polymeric substance formation in Rubrivivax benzoatilyticus JA2. Journal of hazardous Materials. 2020;385:121571. [DOI:10.1016/j.jhazmat.2019.121571]
9. Bazrafshan E, Noorzaei S, KordMostafapour F. Photocatalytic Degradation of Aniline in Aqueous Solutions Using Magnesium Oxide Nanoparticles . J Mazandaran Univ Med Sci. 2016; 26 (139) :126-136.
10. Ahmadi S, Mostafapour FK, Bazrafshan E, Esfahani Z, Rakhsh Khorshid A. Investigating the Efficiency of Dissolved Air Flotation Process for Aniline Removal from aquatic Environments. Journal of Water and Wastewater. 2017; 28(3), 64-73.
11. Lin X, Zhang J, Luo X, Zhang C, Zhou Y. Removal of aniline using lignin graftedacrylic acid from aqueous solution. ChemEng J 2011; 172(2-3): 856-563. [DOI:10.1016/j.cej.2011.06.073]
12. Kumar A, Mathur N. Photocatalytic oxidation of aniline using Ag+-loaded TiO2 suspensions. Appl Catal A-Gen 2004; 275(1-2): 189-197. [DOI:10.1016/j.apcata.2004.07.033]
13. Anotai J, Lu M-C, Chewpreecha P. Kinetics of aniline degradation by fenton and electrofenton processes. Water Res 2006; 40(9): 1841-1847. [DOI:10.1016/j.watres.2006.02.033]
14. An F, Feng X, Gao B. Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO2. Chem Eng J 2009; 151(1-3): 183-187. [DOI:10.1016/j.cej.2009.02.011]
15. Chen S, Sun D, Chung J-S. Simultaneous methanogenesis and denitrification of aniline wastewater by using anaerobic-aerobic biofilm system with recirculation. J Hazard Mater 2009; 169(1-3): 575-580. [DOI:10.1016/j.jhazmat.2009.03.132]
16. Gómez JL, León G, Hidalgo AM, Gómez M, Murcia MD, Grinan G. Application of reverse osmosis to remove aniline from wastewater. Desalination 2009; 245(1-3): 687-693. [DOI:10.1016/j.desal.2009.02.038]
17. Ferreira M, Pinto MF, Neves IC, Fonseca AM, Soares OSGP, Órfao JJM, Pereira MFR, Figueiredo JL, Parpot P. Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chem Eng J 2015; 260: 309-315. [DOI:10.1016/j.cej.2014.08.005]
18. Arqiani, M., Jonidi Jafari, A., Rezaeei Kalantary, R., & Gholami, M. Study of the Aniline removal from industrial wastewater by Electrochemical process. Iran Occupational Health Journal, 2013; 10(1), 70-78.
19. Abramovic BF, Despotović VN, Sojic DV, Orcic DZ, Csanadi JJ, Cetojevic-Simin DD. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products. Chemosphere 2013; 93(1): 166-171. [DOI:10.1016/j.chemosphere.2013.05.024]
20. Dehghani fard, E., Jonidi Jafari, A., Rezae Kalantari, R., Gholami, M., & Esrafili, A. Photocatalytic Removal of Aniline from Synthetic Wastewater using ZnO Nanoparticle under Ultraviolet Irradiation. Iranian Journal of Health and Environment, 2012; 5(2), 167-178.
21. Cao Y-C, Fu Z, Wei W, Zou L, Mi T, He D, et al. Reduced graphene oxide supported titanium dioxide nanomaterials for the photocatalysis with long cycling life. Applied Surface Science. 2015;355:1289-94. [DOI:10.1016/j.apsusc.2015.08.036]
22. Zadmehr, L., & Salem, S. Effects of Iron and Graphene Oxide on the Photocatalytic activity of Titanium Dioxide for Methylene Blue Degradation. Journal of Water and Wastewater. 2020; 31(4), 40-56.
23. Zangiabadi M, Shamspur T, Saljooqi A, Mostafavi A. Evaluating the efficiency of the GO/Fe3O4/TiO2 mesoporous photocatalyst for degradation of chlorpyrifos pesticide under visible light irradiation. Appl Organometal Chem. 2019;e4813. [DOI:10.1002/aoc.4813]
24. Ma J, Guo S, Guo X. Ge, H. A mild synthetic route to Fe3O4@ TiO2-Au composites: preparation, characterization and photocatalytic activity. Applied Surface Science, 2015; 353, 1117-1125. [DOI:10.1016/j.apsusc.2015.07.040]
25. Zhang H, Wu X, Wang Y, Chen X, Li Z, Yu, T. Preparation of Fe2O3/SrTiO3 composite powders and their photocatalytic properties. Journal of Physics and Chemistry of Solids, 2007; 68, 280-283. [DOI:10.1016/j.jpcs.2006.11.007]
26. Sánchez L, Peral J, Domènech X. Photocatalyzed destruction of aniline in UV-illuminated aqueous TiO2 suspensions. Electrochimica Acta. 1997;42(12):1877-82. [DOI:10.1016/S0013-4686(96)00400-8]
27. Anotai J, Su C-C, Tsai Y-C, Lu M-C. Effect of hydrogen peroxide on aniline oxidation by electro-Fenton and fluidized-bed Fenton processes. Journal of Hazardous Materials. 2010;183(1-3):888-93. [DOI:10.1016/j.jhazmat.2010.07.112]
28. Thakurata, DG, Das KC. Dhar SS. Efficient photocatalytic degradation of aniline blue under solar irradiation by ternary cobalt ferrite/graphitic carbon nitride/bentonite nanocomposite. Environ Sci Pollut Res. 2022; 29, 34269-34277. [DOI:10.1007/s11356-021-18242-3]
29. Ao Y, Xu J, Fu D, Shen X, Yuan C. A novel magnetically separable composite photocatalyst: titania-coated magnetic activated carbon. Sep Purif Technol. 2008 61(3):436-441 [DOI:10.1016/j.seppur.2007.12.007]
30. Das KC, Dhar SS. Remarkable catalytic degradation of malachite green by zinc supported on hydroxyapatite encapsulated magnesium ferrite (Zn/HAP/MgFe2O4) magnetic novel nanocomposite. J Mater Sci. 2020; 55(11):4592-4606 [DOI:10.1007/s10853-019-04294-x]
31. Chiou CH, Wu CY. Juang RS, Influence of Operating Parameters on Photocatalytic Degradation of Phenol in UV/TiO2 Process, Chemical Engineering Journal, 2008; 139, 322. [DOI:10.1016/j.cej.2007.08.002]
32. Nasiri A, Malakootian M, Ansari Shiri M, Yazdanpanah G, Nozari M. CoFe2O4@ methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology. Journal of Polymer Research. 2021; 28(5):1-23. [DOI:10.1007/s10965-021-02540-y]
33. Hashemi H, Bahrami S, Emadi Z, Shariatipor H, Nozari M. Optimization of ammonium adsorption from landfill leachate using montmorillonite/hematite nanocomposite: response surface method based on central composite design. Desalination and Water Treatment. 2021; 1; 232:39-54. [DOI:10.5004/dwt.2021.27455]
34. Nozari M, Malakootian M, Jafarzadeh Haghighi Fard N, Mahmoudi-Moghaddam H. Synthesis of Fe3O4@ PAC as a magnetic nano-composite for adsorption of dibutyl phthalate from the aqueous medium: Modeling, analysis and optimization using the response surface methodology. Surfaces and Interfaces. 2022; 1; 31:101981. [DOI:10.1016/j.surfin.2022.101981]
35. Nozari M, Malakootian M, Jafarzadeh Haghighi Fard N, Mahmoudi-Moghaddam H. Degradation of dibutyl phthalate from synthetic and real wastewater using ultrasound/hydrogen peroxide system. Desalination and Water Treatment. 2023; 291:1-19. [DOI:10.5004/dwt.2023.29349]
36. Malakootian M, Faraji M, Malakootian M, Nozari. Ciprofloxacin removal from aqueous media by adsorption process: A systematic review and meta-analysis. Desalination and Water Treatment. 2021; 1; 229:252-82. [DOI:10.5004/dwt.2021.27334]
37. Kianian S, Toulakani RM, Zisti F, Balarak D, Siddiqui SH, Saloot MK. Degradation of Antibiotics by Ultrasound-Assisted Heterogeneous Activation of Persulfate and Peroxymonosulfate: A Review. Int. J. Pharm. Investigation. 2024;14(1):23-9. [DOI:10.5530/ijpi.14.1.4]
38. Naghsh N, Chandrika K. Thermodynamic Study of Adsorption of Amoxicillin on Synthesized NiO of Pharmaceutical Wastewater. Int. J. Pharm. Investigation. 2024;14(2):365-70. [DOI:10.5530/ijpi.14.2.45]
39. F Zisti F, Al-Behadili FJM, Nadimpour M, Rahimpoor R, Mengelizadeh N. Synthesis and characterization of Fe3O4@ SiO2-supported metal-organic framework PAEDTC@ MIL-101 (Fe) for degradation of chlorpyrifos and diazinon pesticides. Environmental Research. 2024; 245, 118019. [DOI:10.1016/j.envres.2023.118019]
40. Al-Ha-Wary SIS, Gupta R, Sapaev IB, Oudaha KH. Efficient removal of amoxycillin antibiotics onto magnetic graphene oxide: adsorption performance, mechanism, and regeneration exploration. International Journal of Environmental Analytical Chemistry, 2023; 103'; 1-23.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons License
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Designed & Developed by : Yektaweb