Volume 12, Issue 4 (2-2025)                   jmsthums 2025, 12(4): 79-89 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

N H N, MM F, M G. Improving Dose Accuracy in Radiation Therapy: Validating Monte Carlo Simulations with GATE and PRIMO. jmsthums 2025; 12 (4) :79-89
URL: http://jms.thums.ac.ir/article-1-1347-en.html
1- Physics Department, Faculty of Sciences, University of Birjand, Birjand, Iran
2- Biomedical Engineering and Medical Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Abstract:   (143 Views)
Background & Aim: Optimizing radiation dose in radiotherapy treatments is of great importance. Monte Carlo simulation of medical linear accelerators is a key tool for enhancing precision and reliability in treatment planning, reducing radiation risks, improving treatment quality and effectiveness, and saving time and resources.
Methods: In this study, the treatment head components of a Varian Clinac 2100 linear accelerator were modeled using the GATE/ GEANT 4 code (version 8.2) and the PRIMO simulation software (version 0.3.64.1841). The developed model was validated for a 6 MeV photon beam using the phase-space technique in both PRIMO and GATE codes, as well as the conventional dose calculation method in GATE. The calculated results were compared with measurements conducted in a water phantom with dimensions of 50 × 50 × 30 cm³ at a source-to-surface distance (SSD) of 100 cm. Percentage depth dose (PDD) and transverse profiles were calculated at a depth of 10 cm and at the depth of maximum dose for field sizes of  5 × 5 cm², 15 × 15 cm², and 30 × 30 cm².
Results: Dosimetry was performed using voxel sizes of 2 × 2 × 2 cm³ for percentage depth dose and 5 × 5 × 2 mm³ for transverse profiles. The optimal parameters, including an average electron beam energy of 6.2 MeV, a standard deviation of 0.17 MeV, and an electron source size of 2 mm, were determined, showing good agreement between simulation and measurement results.
Conclusion: The results indicated that the mean point-to-point deviation was less than 2.5%, and 95.56% of the evaluated points met the gamma index criterion of 3/3% mm. This study confirms the capability of the PRIMO and GATE codes in radiotherapy applications.
Full-Text [PDF 600 kb]   (98 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/10/2 | Accepted: 2025/01/29 | Published: 2025/03/15

References
1. 1) Greene D, Williams PC. Linear accelerators for radiation therapy. CRC Press; 2017 Aug 2. [DOI:10.1201/9780429246562]
2. 2) Khoshhal, A.R., Khatibani, A.B., Tirehdast, Z., Shaddoust, M. and Nirouei, M., 2024. Evaluation of experimental and simulated gamma ray shielding ability of ZnCo2O4 and ZnCo2O4/graphene nanoparticles. Optical Materials, 156, p.115953. [DOI:10.1016/j.optmat.2024.115953]
3. 3) Khatibani, A.B., Khoshhal, A.R., Tochaee, E.B., Jamnani, S.R. and Moghaddam, H.M., 2024. Physical and gamma radiation shielding features of Sm2O3/graphene nanoparticles: A comparison between experimental and simulated gamma shielding capability. Inorganic Chemistry Communications, p.112772. [DOI:10.1016/j.inoche.2024.112772]
4. 4) Khoshhal, A.R. and Esmaili Torshabi, A., 2024. Feasibility of Anthropomorphic Head Phantom Design Using DLP 3D Printing for Dosimetry. Journal of Nuclear Research and Applications, 4(3), pp.24-32. [DOI:10.24200/jonra.2024.1634.1140]
5. 5) Hermida-López M, Sánchez-Artuñedo D, Calvo-Ortega JF. PRIMO Monte Carlo software benchmarked against a reference dosimetry dataset for 6 MV photon beams from Varian linacs. Radiation Oncology. 2018 Dec;13:1-0. [DOI:10.1186/s13014-018-1076-0]
6. 6) Yazdpour Parizi T, Mommennezhad M, Naseri S, Jamali M. Validation of treatment planning system using simulation PRIMO code. Iranian Journal of Medical Physics. 2018 Dec 1;15(Special Issue-12th. Iranian Congress of Medical Physics):279-.
7. 7) Esposito A, Silva S, Oliveira J, Lencart J, Santos J. Primo software as a tool for Monte Carlo simulations of intensity modulated radiotherapy: a feasibility study. Radiation Oncology. 2018 Dec;13:1-3. [DOI:10.1186/s13014-018-1021-2]
8. 8) Berthes S, Großmann S, Schmidberger H, Brualla L, Rodriguez M, Karle H. [P292] Dosimetric verification and clinical evaluation of PRIMO as an independent Monte-Carlo-based dose verification tool. Physica Medica: European Journal of Medical Physics. 2018 Aug 1;52:184. [DOI:10.1016/j.ejmp.2018.06.566]
9. 9) Krim DE, Rrhioua A, Zerfaoui M, Bakari D, Hanouf N. GATE Simulation of 6 MV Photon Beam Produced by Elekta Medical Linear Accelerator. In International Conference on Electronic Engineering and Renewable Energy 2020 Apr 13 (pp. 301-307). Singapore: Springer Singapore. [DOI:10.1007/978-981-15-6259-4_31]
10. 10) Fiak M, Fathi A, Inchaouh J, Khouaja A, Benider A, Krim M. et al. Monte Carlo Simulation of a 18 MV Medical Linac Photon Beam Using GATE/GEANT4. Moscow University Physics Bulletin. 2021 Jan;76(1):15-21. [DOI:10.3103/S0027134921010069]
11. 11) Toosi MT, Momeni S, Soleymanifard S, Gholamhosseinian H. Evaluation of dose calculation accuracy of isogray treatment planning system in craniospinal radiotherapy. Iran J Med Phys. 2018 Oct 1;15(4):231-6.
12. 12) Thwaites DI, Tuohy JB. Back to the future: the history and development of the clinical linear accelerator. Physics in medicine & biology. 2006 Jun 20;51(13):R343. [DOI:10.1088/0031-9155/51/13/R20]
13. 13) Sempau J, Badal A, Brualla L. A PENELOPE‐based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far‐from‐axis fields. Medical physics. 2011 Nov;38(11):5887-95. [DOI:10.1118/1.3643029]
14. 14) Altuwayrish A, Ghorbani M, Bakhshandeh M, Roozmand Z, Hosseini M. Comparison of PRIMO Monte Carlo code and Eclipse treatment planning system in calculation of dosimetric parameters in brain cancer radiotherapy. reports of practical Oncology and radiotherapy. 2022;27(5):863-74. [DOI:10.5603/RPOR.a2022.0091]
15. 15) Allison J, Amako K, Apostolakis JE, Araujo HA, Dubois PA, Asai MA. et al. Geant4 developments and applications. IEEE Transactions on nuclear science. 2006 Feb;53(1):270-8.
16. 16) Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM. et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical physics. 2014 Jun;41(6Part1):064301. [DOI:10.1118/1.4871617]
17. 17) Grevillot L, Frisson T, Maneval D, Zahra N, Badel JN, Sarrut D. Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Physics in Medicine & Biology. 2011 Jan 19;56(4):903. [DOI:10.1088/0031-9155/56/4/002]
18. 18) Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang JM. et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Medical physics. 2014 Jun;41(6Part1):064301. [DOI:10.1118/1.4871617]
19. 19) Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Medical physics. 1998 May;25(5):656-61. [DOI:10.1118/1.598248]
20. 20) Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA. et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo‐based photon and electron external beam treatment planning. Medical physics. 2007 Dec;34(12):4818-53. [DOI:10.1118/1.2795842]
21. 21) Hussein M, Clark CH, Nisbet A. Challenges in calculation of the gamma index in radiotherapy-towards good practice. Physica Medica. 2017 Apr 1;36:1-1. [DOI:10.1016/j.ejmp.2017.03.001]
22. 22) Alashkar EM, Abdelhafez HM, Kenawy MA, Hassan GM, Ereiba KT, Megahed A. Comparison Flattening Filter and Flattening Filter-Free Techniques in Small-Fields Dosimetry with Various Types of Detectors. Asian Pacific Journal of Cancer Prevention: APJCP. 2024;25(6):2105. [DOI:10.31557/APJCP.2024.25.6.2105]
23. 23) Stasi, M., Bresciani, S., Miranti, A., Maggio, A., Sapino, V. and Gabriele, P., 2012. Pretreatment patient‐specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Medical physics, 39(12), pp.7626-7634. [DOI:10.1118/1.4767763]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Designed & Developed by : Yektaweb